If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+30n=0
a = 5; b = 30; c = 0;
Δ = b2-4ac
Δ = 302-4·5·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30}{2*5}=\frac{-60}{10} =-6 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30}{2*5}=\frac{0}{10} =0 $
| 1+8x=9=-20=2x | | -50=-k/10 | | -50=-k/0 | | (2x+1)=(8x−17) | | 3v+4=1.5-3v | | 3v=+4=1.5-3v | | (6x−7)+(x+13)=180 | | 64=8x-128 | | 8=t/5t6 | | 5x(5.5-12.5x)=9.5 | | 3c+15=3-c | | (4x+5)8=20(10) | | -3(-4-6y)+7(-y-5)=0 | | 5x(5.5-12.5x=9.5) | | -2w=5-2w | | 26=12y-9+7y | | 12.4=14-x/5 | | 21x-15/18-11=9.5 | | 5b-8=3b-24 | | 0.5(28x-68)=11x+29 | | P=-20x+220 | | 200+1.5x=548+1.4x | | (4x-18)=(2x-6) | | 2x+x+5+2x=20 | | −2x+6=10 | | 9x+60=14x+20 | | 200+(1+(1/2))x=548+(1+(2/5))x | | 10)1+3x)=-80 | | 1=10x=64+x | | 7.69-(2.5)(4)=a | | 7=(x-8)3 | | 1/2x+125=4x-120 |